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Abstract—Here we experimentally quantify the effects of
wing morphological and inertial parameters on flapping flight
performance. Through running at-scale, passive pitching exper-
iments with different wing designs, we compare the relative
importance of wing inertia, wing shape, and wing-actuation
pairing. We find wing inertia strongly influences the coupling
between stroke and pitch dynamics, which directly impacts
lift production and efficiency. Flapping resonance frequency is
reduced as wing aspect ratio or area moment increases. Further,
wing leading edge design strongly influences chordwise center
of pressure, which further impacts pitching dynamics. Based
on our experimental results we propose a new wing design and
measure 37% increase in mean lift relative to a previous work
[1].

I. INTRODUCTION

Recent advances in micro-fabrication technology and a
deeper understanding of insect flight have enabled a number
of flapping wing vehicles to achieve stable hovering flight
[2], [3], [4]. Compared to traditional fixed wing aircraft
or rotary wing vehicles, flapping wing devices have higher
maneuverability [5] and can achieve smaller physical sizes.
These vehicles rely on unsteady aerodynamic phenomena
such as delayed stall and vortex shedding to generate large
periodic forces. At the scale of small birds, vehicles such as
the Delfly and the Nanohumming bird have demonstrated
autonomous flight by incorporating onboard sensors and
power.

However, achieving autonomous flight becomes increas-
ingly challenging as vehicle size shrinks and relative sensor
and battery payload increase. The Harvard RoboBee [4] is an
80mg flapping wing robot that achieves hovering flight but
relies on a tether to draw power from off-board amplifiers.
A previous study aimed to increase payload capability by
scaling up the actuator and wing size [1]. The scaled up
RoboBee weighs 210mg, has a wing span of 4.2cm, and
is capable of lifting 110mg of payload. Figure 1 shows
a photograph of the scaled up RoboBee. While this work
allows the incorporation of onboard sensors and circuitry,
the vehicle still cannot carry an onboard battery. Here we
take an experimental approach towards improving the robot’s
flapping performance and thus payload capacity.
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Figure 1. A recent RoboBee design weighing 210mg and capable of lifting
110mg of payload. The robot wing span is 4.2cm and operates at 70Hz.

Numerous previous studies on insect flight focus on either
unsteady fluid mechanics [6], [7], [8] or influences of flapping
kinematics [9], [10]. While these studies lead to useful
design principles, most do not explore the influences of wing
morphological and inertial parameter on flight performance.
Although a quasi-steady model with passive pitching [11] has
been proposed, the model relies on careful parameter fitting
to a particular wing shape. In this paper, we study wing
morphological and inertial parameter influence on flapping
flight through designing and testing a suite of different wing
and hinge pairs. We demonstrate that wing morphology has
a large impact on lift enhancement and significantly changes
the robot operating frequency. Through experimentation we
improve the robot maximum mean lift by 37%, which is
equivalent to approximately doubling the current payload
capability.

Our results show wing inertia influences stroke and pitch
coupling, which further impacts mean lift by more than
60%. Increasing wing aspect ratio (AR) reduces system
resonance and adversely affects structural stiffness. Wing
shape parameters – first area moment (r̂1) and leading edge
sweep ratio (LESR) – influence passive pitching. Finally,
reducing wing size increases system operation frequency and
mean lift at the cost of higher power consumption. While
our experimental studies aim to improve the performance of
the Harvard RoboBee, the experimental results are directly
applicable to other flapping wing robotic designs.
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Figure 2. Flapping kinematics of the Harvard RoboBee. a) Illustration of
the two rotational degrees of freedom. b) Illustration of the wing stroke (φ)
and pitch (ψ) motion with respect to the coordinate definition. c) Example
of tracked wing stroke and pitch motion. The horizontal axis is scaled to a
flapping period.

II. EXPERIMENTAL SETUP

A. Flapping kinematics

As shown in figure 2a, the flapping motion has two degrees
of freedom—stroke and pitch. Two piezoelectric bimorphs
actuate the wing stroke motion while wing pitch is passively
mediated by compliant flexures. Figure 2b defines the wing
stroke angle φ and pitch angle ψ. Figure 2c shows both stroke
and pitch motion can be approximated as pure sinusoids:

φ(t) = φmax cos(2πft)
ψ(t) = ψmax sin(2πft+ δ)

(1)

where φmax is the stroke amplitude, ψmax is the wing pitch
amplitude, f is the flapping frequency and δ is the relative
phase shift. In our experiments f is specified, whereas φmax

, ψmax , and δ depend on driving signals, wing morpho-
logical and inertial designs, actuator sizing, and wing driver
transmission.

B. Wing designs and fabrication

The millimeter-scale wings consists of a carbon fiber frame
and a polyester membrane. Based on Ellington’s study [12] of
insect wing shape and parametrization, the wing morphology
is fully prescribed by a physical scale R, a dimensionless
function yLE(r), and two dimensionless quantities r̂1 and
AR. Here R is the wing span, yLE(r) is the wing leading
edge profile, r̂1 is the dimensionless first moment of area, and
AR is the aspect ratio. The inertial parameters such as mass
and moment of inertia can be changed by varying carbon
fiber spar thicknesses. Figure 3 illustrates the parameters we
modify. Figure 3a shows how wing inertia can be changed
by varying spar thickness. Figure 3b shows how varying
AR changes the wing spanwise to chordwise ratio. Figure
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Figure 3. Illustration of different wing morphological and inertial param-
eters. a) Change of wing spanwise and chordwise moment of inertia by
varying spar thickness from 0.14mm to 0.29mm. b) Change of aspect ratio
AR from 3 to 5.5. c) Change of spanwise first wing moment r̂1 from 0.49
to 0.55. d) Change of leading edge sweep ratio in range of 0.5 to 1.75. e)
Change of wing size from 94.5mm2 to 162 mm2.

3c shows how varying r̂1 shifts wing spanwise area moment
toward the wing tip. Figure 3d shows variation of the leading
edge profile (LESR) by scaling it with a multiplicative factor
in the range of 0.5 to 1.75. Finally, figure 3e shows how we
further vary wing size to investigate actuator-wing pairing.
All wing design variations are scaled relative to the "baseline"
wing design from the scaled up Robobee from [13].

C. Wing driver setup

In addition to quantifying the influence of wing mor-
phological and inertial parameters, we aim to improve the
RoboBee lift capability. The scaled RoboBee utilizes a mod-
ular design such that it consists of two symmetrical halves.
Here we use one half of the RoboBee as the wing driver.
Specific design parameters and manufacturing methods are
discussed in [13]. The wing driver is mounted on an existing
setup to measure lift and drag forces. A video of the flapping
wing motion is captured using a Phantom 7.0 high speed
camera and post-processed to extract kinematics.

D. Motion tracking method

We develop an efficient and robust kinematic tracking
method to rapidly test different wing planforms. While
previous studies developed tracking methods based on area
thresholding or laser sheet illumination, these methods need
to be meticulously calibrated for wing shape, size, and cam-
era lighting [9], [13]. To study wing inertia, morphology, and
sizing effects on force generation and efficiency, we run more
than 2000 flapping experiments for over 40 different wing
designs. Every flapping experiment is recorded using a high
speed camera and post processed to extract the kinematic
parameters φmax, ψmax, and δ.

Here we introduce a computationally efficient tracking
method that does not require manual calibration and expen-
sive nonlinear calculations such as morphological opening
and closing. Given a sequence of raw images (Figure 5a), we
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Figure 4. Illustration of the experimental set up. Two capacitive force
sensors measure mean lift and drag forces. One half of the scaled up
RoboBee serves as the wing driver. A high speed camera captures flapping
kinematics at 10KHz, and a resistive circuit measures power dissipation.

first remove the background and threshold the image. Next,
we compute the Hough transform of the binary image to es-
timate major line segments. The blue lines in figure 5b show
the lines found by Hough transform. These line segments
terminate at the image border and may be skewed due to
noise. To track the leading edge spar and two diagonal wing
spars, we project the endpoints of each Hough transformed
line to the closest black pixel. The green lines in figure
5c show the Hough transformed lines after the endpoints
are projected to the wing skeleton. These lines accurately
represent the wing leading edge spar and diagonal spars.
Finally, we compute the intersection of these lines and cluster
the points to identify the spar intersections. The red circles in
figure 5d show the computed intersection points. Finally, we
locate the diagonal spar endpoints and label them as trailing
edge points. These points are labeled in green in figure 5d.

Knowing the wing geometry and having located the lead-
ing edge points (red) and trailing edge points (green), we can
compute the kinematic parameter φ(ti) and ψ(ti), where ti
represent the ith frame. The rotation matrix from a standard
reference frame to the current frame is given by: x1

y1
z1

 =

 cosφ − cosψ sinφ − sinψ sinφ
sinφ cosψ cosφ sinψ sinφ

0 − sinψ cosψ

 x0
y0
z0


(2)

Here each tracked point gives (x1, y1) but does not provide
depth information. We formulate a non-linear overdetermined
system consisting of eight equations and two unknowns. This
equation can be solved by numerical least squares methods.

III. RESULTS

A. Wing inertia influence on system resonance

In flapping flight with passive pitching, stroke and pitch
coupling is sensitively dependent on the effects of wing
inertia [14], [15], [16]. Here we investigate the effect of
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Figure 5. Automated kinematic tracking algorithm. a) The original image
captured by the high speed video camera. b) Hough transform detects line
segments in the picture. c) The endpoints of the Hough transformed lines
are projected to the thresholded image. d) Intersection points and endpoints
are computed to identify wing leading edge points and trailing edge points.
These points allow the estimation of instantaneous wing stroke and pitch.

# 1 # 2 # 3 # 4 # 5 # 6
spar width (mm) 0.14 0.17 0.20 0.23 0.26 0.29
Ixx(mg·mm2) 1.91 2.25 2.56 2.90 3.27 3.64
Izz(mg·mm2) 40.6 48.8 57.2 65.6 73.4 82.7

Table I
INERTIAL PROPERTIES OF WINGS WITH DIFFERENT SPAR WIDTH

wing inertia by varying spar thickness while keeping other
morphological parameters constant. Table I shows the spar
thickness, spanwise and chordwise moment of inertia of the
wings used in experiments. The wing spanwise and chord-
wise inertia increases linearly as wing index increases. We
further explore wing inertial influence on system resonance.
Here we model the system as a mass spring damper system
and define system resonance as the flapping frequency that
corresponds to maximum stroke amplitude.

While a previous study [17] predicts that a reduction of
wing inertia improves performance, our result shows that the
best performing wing does not have the minimum inertia.
Wing spanwise and chordwise inertia affect stroke and pitch
amplitude, which further affects lift production and power
dissipation. Figure 6a shows the measured maximum lift from
each wing. Figure 6b and 6c further shows the corresponding
driving frequency and power dissipation. Figure 6a shows
that wing 4 generates the highest mean lift when driven at
140Hz and the actuator consumes 23.1mW power. Figure 6b
shows that the flapping resonance decreases as wing inertia
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Figure 6. Wing performance versus wing spar width. a) Maximum mean
lift versus wing number. b) Driving frequencies at maximum mean lift
versus wing number. c) Power dissipation at maximum mean lift versus
wing number.

increases. In later discussions we show how this phenomenon
can be described using a non-linear spring damper system
based on the quasi-steady model. Figure 6c shows that
power dissipation decreases slightly as resonance frequency
decreases. However, the drop in power dissipation is small
compared to the reduction of mean lift.

Change of wing inertia affects wing stroke and pitch mo-
tion. Figure 7a and 7b compare the experimentally measured
wing stroke amplitude of wing 1 and wing 6. As the wing
driver flaps a wing with small inertia, stroke amplitude varies
slowly as driving frequency changes. This suggests that the
wing driver behaves as a displacement source and the wing
inertial contribution is small. As wing inertia increases, stroke
amplitude varies noticeably as driving frequency changes.
At higher driving frequencies, wing inertial effects become
significant and consequently reduce stroke amplitude. Simi-
larly, pitching kinematics also depend on wing inertia. Figure
8a shows the measured pitching amplitude ψ for different
wings when flapped at 140Hz. The the quasi-steady model
estimates CL ∝ sin(2α) = cos(2ψ), which implies that
mean lift directly correlates with pitching kinematics. While
Figure 6 shows that wing 4 generates the largest mean lift,
Figure 8a further illustrates that wing 4 has the maximum
pitch amplitude ψmax. Initially, ψmax increases as wing
inertia increases, however ψmax falls sharply as wing inertia
continues to increase.

We use a quasi-steady model to describe the wing inertia’s
effect on stroke and pitch coupling. We can formulate a
system of coupled ordinary differential equation as:

Izzφ̈+ k1φ+ FDRcop,x = FactRcop,x
Ixxψ̈ + k2ψ + d2ψ̇ = τaero

, (3)

where FD is the drag force, τaero is the spanwise fluid torque,
and Fact is the actuator input. Here we invoke the formula:

FD = (1.4− cos(2α))b1|φ̇|φ̇
τaero = b2 ˙|φ|φ̇Rcop,z
Fact = Fa cos(2πft)

(4)

where α = π
2 −ψ is the angle of attack. Rcop,x and Rcop,z

are the x and z components of the center of pressure. We
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Figure 7. Influence of wing inertia on stroke amplitude φmax. Each plot
shows experiments or simulations with driving frequencies from 100Hz to
140Hz in steps of 10Hz, and driving voltage amplitude from 80V to 150V
in steps of 10V. a) Experimentally measured φmax for the wing of thinnest
spar width. b) Experimentally measured φmax for the wing of thickest spar
width. c) Simulated φmax for the wing of thinnest spar width. d) Simulated
φmax for the wing of thickest spar width.

80 100 120 140
0

10

20

30

40

50

voltage (V)

an
g

le
 (

d
eg

re
e)

 

 

wing 1
wing 2
wing 3
wing 4
wing 5
wing 6

80 100 120 140
0

10

20

30

40

50

voltage (V)

an
g

le
 (

d
eg

re
e)

simexp

increase

inertiaincrease

inertia

a) b)

6

1

2

3

4

5

1

2

3

4

5

6

Figure 8. Influence of wing inertia on pitch amplitude ψmax. Each plot
shows experiments or simulations with driving frequencies at 140Hz,
and driving voltage amplitude from 80V to 150V in steps of 10V. a)
Experimentally measured pitch amplitude ψmax for all 6 wings at 140Hz.
b) Simulated pitch amplitude ψmax for all 6 wings at 140Hz. The arrows
show maximum pitching is achieved at an intermediate wing inertia value.
Resonance of pitching amplitude sensitively depends on wing inertia.

approximate Rcop,x using the first moment of wing shape:

Rcop,x = r̂1R. (5)

From a previous study we found that Rcop,z is a strong
function of α [18]. We approximate Rcop,z using a sigmoid
function:

Rcop,z = (0.25 +
0.25

1 + exp(5× (1− 4
πα))

)c̄ (6)

Here we scale the sigmoid function such that we recover
the thin airfoil limit at small α and the symmetric condition
at α = π

2 . The coefficients b1, b2, k1, k2, d2, and Fa



are manually adjusted to fit the measured data. This simple
model intends to investigate the trend of inertia influence
on flapping performance. It ignores unsteady effects such as
added mass, wake capture and rotational acceleration because
in passive pitching simulations these extra terms may lead to
excessive over-fitting. Here we use the model to demonstrate
how the trend observed in Figures 7 and 8 is caused by stroke
and pitch coupling. Figure 7c and 7d shows the simulated
stroke amplitude for wings 1 and 6. Similar to figure 7a and
7b, we observe that the stroke amplitude varies slowly with
frequency for a low inertia wing and varies rapidly for a high
inertia wing. Figure 8b shows simulated pitch kinematics of
each wing when driven at 140Hz. We observe a similar trend
to figure 8a. Here pitch amplitude is maximum for a wing
with intermediate moment of inertia.

This simplified quasi-steady model offers an intuitive de-
scription of stroke-pitch coupling. Equation (3) suggests that
both stroke and pitch amplitude sensitively depend on the
wing moment of inertia.

B. Wing aspect ratio influence

We investigate the influence of wing aspect ratio AR by
varying this parameter while keeping wing area and spar
thickness constant. Figure 9a shows the maximum mean lift
as a function of AR. Figure 9b and 9c show the correspond-
ing driving frequency and power dissipation. We observe
decreasing maximum mean lift and resonance frequency as
AR increases. The maximum mean lift of the wing with
AR = 3 is slightly lower than AR = 3.5 because its
resonance frequency is expected to be higher than 140Hz.
At the highest driving frequency and voltage (140Hz and
150V ), the pitch magnitude is 36◦. We expect ψ to continue
to increase at higher driving frequencies. Consequently, we
expect the maximum mean lift of the wing to be the highest
for the wing with smallest AR.

The reduction of resonance frequency at large AR is par-
tially contributed by the increase of wing chordwise moment
of inertia. As wing aspect ratio increases, wing radius R
increases and mean chord c̄ decreases. Consequently, the
chordwise moment of inertia Izz increases and the spanwise
moment of inertia Ixx decreases. Figure 10a shows Izz and
Ixx as functions of AR. In section III.A, both experimental
results and the simplified quasi-steady model demonstrate
that increasing wing inertia decreases wing resonance. Here
we observe that the increase in AR increases Izz , which af-
fects the resonance of the wing stroke motion. Consequently,
a wing with larger AR has a lower resonance frequency.

Further, wing structural stiffness decreases rapidly as AR
increases. To first order the wing bending stiffness can be
modelled as that of a cantilever beam:

K =
3EIzz
R3

, (7)

where E is the Young’s modulus of carbon fiber and R is
wing span. An increase of AR implies an increase of wing
span R, and consequently leads to reduction of stiffness K. In
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Figure 9. Wing performance versus wing aspect ratio. a) Maximum mean
lift versus wing number. b) Driving frequencies at maximum mean lift
versus wing number. c) Power dissipation at maximum mean lift versus
wing number.

addition, the quasi-steady model predicts a quadratic increase
of aerodynamic force along the wing span. Consequently, we
observe the large AR wings experience significant deforma-
tion at high driving frequencies. Figure 10b compares wing
deformation between AR = 3 and 5.5. Figure 10b-i shows
a wing with AR = 3 being driven at 140Hz and 150V. We
observe the wing as a flat, rigid plate at T = 0 and T = 0.15.
Figure 10b-ii shows a wing with AR = 5.5 being driven
at 120Hz and 110V. Although the operating frequency and
voltage input are lower, we observe significant deformation.
At T = 0, we observe a torsional wave propagating from
wing tip to wing root. This twist is illustrated by the red
arrows on figure 10b-ii. In contrast, we do not observe large
twisting for the wing with AR = 3. At T = 0.15, the wing
tip accelerates and the force near the wing tip quickly grows.
Consequently, we observe noticeable bending of the wing
leading edge spar in the AR = 5.5 wing. This is illustrated
by the curved red line in figure 10b-ii. In contrast, the leading
edge spar of the AR = 3 wing does not deform. This
observation is illustrated by the red line segment in figure10b-
i. Hence, increasing aspect ratio lowers wing resonance
frequency and adversely affects the wing’s structural rigidity.
While some previous studies [4] indicate adequate wing
flexibility improves wing performance, excessive flexibility
adversely affects wing lifespan. As driving frequency and
voltage continue to increase, wing deformation increases and
eventually the wing leading edge spar breaks under excessive
aerodynamic loading.

C. Influence of wing area moment

In the previous section we observe that increasing wing
AR increases wing spanwise center of pressure and moment
of inertia. Increasing Izz leads to a reduction of the flap-
ping resonance frequency and adversely impacts structural
stiffness. Here we investigate the effect of increased span-
wise center of pressure without significantly changing the
moment of inertia. This can be done by varying the first
area moment r̂1 while holding other wing morphological
parameters constant. Figure 11 compares the performance
of wings with r̂1 in the range of 0.49 to 0.55. Figure 11a
shows that mean lift increases as r̂1 increases. Unlike the
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Figure 11. Wing performance versus wing first moment of area r̂1.
a) Maximum mean lift versus wing number. b) Driving frequencies at
maximum mean lift versus wing number. c) Power dissipation at maximum
mean lift versus wing number.

trend shown in figure 9b, figure 11b shows that the flapping
resonance frequency remains at 140Hz except for r̂1 = 0.54.
The wing with r̂1= 0.54 has a resonance frequency at 130Hz
because it experiences large deformation at 140Hz due to
the large aerodynamic loading. Figure 11c shows that power
dissipation increases slowly as mean lift increases.

Here, flapping resonance frequency changes slowly be-
cause the change in wing inertia is small. Figure 12a shows
the spanwise and chordwise moment of inertia as functions
of r̂1. From r̂1 = 0.49 to r̂1 = 0.55 the relative change
of Ixx and Izz is less than 15%. The increase of mean lift
due to increased r̂1 can be explained by quasi-steady scaling.
Equations (11) and (12) from [17] give

FL =
1

2
ρ
R4

AR

1

2
C̃Lw

2φ2maxr̂
2
2, (8)

where

C̃L = CLmax
2

π

ˆ π

0

sin(2α) cos2(t)dt. (9)

Here the quasi-steady model suggests that mean lift is propor-
tional to r̂2

2. From Ellington’s wing shape parametrization
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Figure 12. Inertial properties and normalized lift as functions of r̂1. a) Both
Ixx and Izz increase slowly as r̂1increases. Here Ixx and Izz increase by
less than 15%. b) Normalized force and r̂22 as functions of r̂1. The quasi-
steady scaling predicts that mean lift is proportional to r̂22 . Here we observe
a similar trend although there is noticeable deviation that may be caused by
more influential parameters such as wing inertia.

study, wing first and second moments r̂1 and r̂2 are related
by the empirical function:

r̂2 = 0.929(r̂1)0.732. (10)

Figure 12b compares the normalized force FL
1
2ρ

R4

AR
1
2 C̃Lw2φ2

max

and r̂22 as functions of r̂1. We observe that the normalized
force roughly follows the quasi-steady scaling relationship
r̂22 . The wing with r̂1 = 0.54 is an outlier because its motion
has large stroke and pitch amplitudes, and consequently leads
to noticeable wing deformation.

D. Leading edge sweep ratio (LESR) influence on wing
pitching

We further explore the effect of wing leading edge sweep
ratio on wing performance. There is noticeable spanwise flow
along the leading edge of a flapping and rotating wing. As
shown in 3D-CFD simulations, positive wing leading edge
sweep can facilitate the growth of a wing tip vortex that
enhances lift. However, varying LESR changes the chordwise
center of pressure, which affects wing pitching. Here we vary
the wing leading edge profile by changing the sweep ratio
from 0.5 to 1.75 in steps of 0.25. Figure 13a shows that mean
lift decreases monotonically as sweep ratio increases. Figure
13b shows that flapping resonance frequency is unaffected by
changes in the wing sweep. Figure 13c shows small changes
of power dissipation as wing sweep ratio increases.

We use quasi-steady scaling to describe the wing sweep
influence on pitching dynamics. Figure 14a shows wing
spanwise and chordwise moment of inertia as functions of
leading edge sweep ratio. The variation of Ixx and Izz are
less than 15% and consequently the effect of changing wing
inertia is small. Figure 14b shows stroke and pitch amplitude
as a function of leading edge wing sweep ratio. Except the
wing with the smallest wing sweep, the stroke amplitude
(black) changes slowly as sweep ratio increases. In contrast,
the measured pitch amplitude ψmax is very sensitive to wing
sweep. We observe that ψmax monotonically decreases from
60◦ to 7◦. This reduction in wing pitch can be explained
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Figure 13. Wing performance versus leading edge sweep ratio. a) Maximum
mean lift versus wing number. b) Driving frequencies at maximum mean lift
versus wing number. c) Power dissipation at maximum mean lift versus wing
number.
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Figure 14. Leading edge sweep ratio influence on flapping performance. a)
Both Ixx and Izz vary slowly as LE sweep ratio increases. b) Measured
stroke and pitch amplitude φmax and ψmax . We also show predicted ψmax

based on measured stroke kinematics using the quasi-steady model. Both the
quasi-steady model and the measurement show that increased LES leads to
decreased ψmax.

using a quasi-steady model at mid-stroke. At mid-stroke, we
impose

Kψ + Ixxψ̈ = τf (11)

where K is the wing hinge stiffness, Ixx is the spanwise
moment of inertia, and τf is the aerodynamic pitch torque.
At mid-stroke, τf is given by

τf = 2π2ρf2φ2max

ˆ R

0

r2c(r)Cf (rcop(r, α)− yLE(r)) dr.

(12)
Here the force coefficient Cf is given by

Cf = (CL(α) cosα+ CD(α) sinα) .

CL, CD, and the local chordwise center of pressure rcop can
be calculated based on the method discussed in section III.A.
Given the relationship ψ = π/2 − α, the only unknown in
equation (12) is ψ. This nonlinear equation can be solved
numerically to estimate ψmax. We use the measured stroke
amplitude, flapping frequency, hinge stiffness, and wing
shape as inputs to solve for ψmax. The result is shown
as the dotted blue line in Figure 13b. Here the quasi-
steady estimation gives the same trend as the experimental
measurement.

E. Wing-actuator pairing

The current enlarged RoboBee is designed using scaling
analysis that does not consider wing-actuator pairing. Here
we investigate wing-actuator pairing by varying wing size.
Changing wing size has a large impact on wing inertia and
system resonance frequency. A previous study [4] shows
system resonance frequency can be approximated by the
formula

f =

√
keq
T 2Izz

, (13)

where keq is the effective stiffness and T is the robot
transmission ratio. keq is determined by the geometry and
material property of compliant flexures and T is defined
to be the ratio between stroke motion output and actuator
tip displacement. This transmission ratio T is determined by
the laminate material thickness. While it is possible to vary
these parameters in the wing driver designs, it is practically
difficult to build and test many wing drivers to study system
resonance. Here we can easily study resonance by varying
the wing inertial parameterIzz .

Changes in wing spanwise moment of inertia directly
impacts resonance frequency since Izz is proportional to R4.
This implies

f ∝ 1

R2
. (14)

Equation (14) suggests that a decrease of wing size increases
resonance frequency. From a system level perspective, chang-
ing wing radius also influences the net force output. The
RoboBee uses a four-bar linkage [5] that can be modeled as

FD = Fact
L3

Rcop,x
(15)

where Fact is the force output from the actuator, Rcop,x
is the spanwise center of pressure and L3 is the effective
effort arm length of the lever-like transmission.. Assuming
the magnitude of the output force Fact is limited by electro-
mechanical properties of the piezoelectric actuator, equation
(15) implies reducing the spanwise wing center of pressure
Rcop,x increases the amount of drag force FD an actuator
can drive against. Since the lift and drag forces are positively
correlated, equations (15) suggest that reducing wing size
leads to increased mean lift force.

However, reducing wing size also has negative effects.
Firstly, the robot flexural transmission life time decreases as
operating frequency increases. In addition, both aerodynamic
efficiency and robot power dissipation increase as wing
size shrinks and flapping frequency increases. Consider two
different sized wings that operate at different frequencies to
generate identical lift. Equation (8) suggests

R4
1f

2
1 = R4

2f
2
2 (16)

This relationship implies 1
R2 ∝ f . The aerodynamic effi-

ciency is proportional to

F̄L
P̄aero

∝ C̄L
C̄DRf

∝ C̄LR

C̄D
(17)



wing 1 wing 2 wing 3 wing 4
wing area (mm2) 162 135 108 94.5

F̄L (mN) 1.11 1.54 1.72 2.03
fresonance (Hz) 70 100 130 150
P̄aero (mW ) 23.7 31.9 40.7 54.8

Table II
WING SIZE, MAXIMUM MEAN LIFT, FLAPPING RESONANCE FREQUENCY,

AND POWER DISSIPATION

In the last step of equation (17) we use the proportionality
relationship between R and f . Consequently, lift per unit
power decreases as wing span decreases.

To validate this system level scaling analysis, we make four
wings of varying wing size and test their performance. Table
II reports wing size, maximum mean lift, flapping resonance
frequency and power dissipation. We observe that mean lift,
flapping resonance frequency, and power dissipation increase
as wing size is reduced. The qualitative relationship between
flapping frequency and wing span is reported in a previous
biological study [19].

F. Enhanced lift of a new wing design

Our experiments show wing size and inertia have the
most significant impact on lift enhancement. Consequently,
we design a new wing with smaller wing size and slightly
thinner wing spars. Compared to the original wing, the wing
span is reduced by 25% and the spanwise moment of inertia
is reduced by 76%. In flapping experiments, we find the
resonance frequency of the new wing to be 150Hz. The
wing produces 2.48mN mean lift when driven at 190V
and the actuator consumes 36.5mW power. The resonance
frequency of the original wing is 80Hz. This wing produces
1.81mN mean lift when driven at 250V and the actuator
consumes 21.5mW. The new wing produces 37% more
lift and costs 70% more power dissipation. Although this
result implies the new wing is less efficient, it significantly
improves mean lift without modifying actuator sizing and
robot transmission. In addition, the robot operational voltage
is significantly lowered, which gives much larger voltage
margin for aerodynamic control and greater efficiency of the
drive electronics.

IV. CONCLUSION

Here we experimentally studied the influence of wing
morphological and inertial parameters on mean lift generation
and power consumption. We designed and fabricated a suite
of different wings and test their efficiency with an at-scale
robotic flapper. The experimental study is complemented with
quasi-steady models that explain the trends observed in our
experiments. Finally, the experimental results lead to the
design of a new wing that generate 37% more lift compared
to the old wing. This is equivalent to doubling the robot
payload capability and is a major improvement towards flight
autonomy.
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