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Abstract— We implement a 2D computational model to inves-
tigate the unsteady aerodynamic effects not captured by classi-
cal quasi-steady models. We compare numerical simulation re-
sults, experimental measurements and quasi-steady predictions
to demonstrate the strength of the numerical tool in identifying
unsteady fluid mechanisms and improving propulsive efficiency
of flapping wing robots. In particular, this study quantifies the
effect of the relative phase between wing degrees of freedom
δ on lift and drag production. The computational model also
identifies unsteady effects such as wake capture and downwash
that are not accounted for in classical quasi-steady models.
To examine the accuracy of our computational model, we
fabricate millimeter-scale wings through the SCM fabrication
processes and measure flapping kinematics and dynamics.
The experiments show 2D computational model is 44% more
accurate than the quasi-steady model and can be further used to
improve wing morphology for better aerodynamic performance.

I. INTRODUCTION

In recent years a number of flapping-wing micro-air-
vehicles have achieved stable hovering flight [1], [2], [3].
Compared to traditional fixed wing or helicopter flight, flap-
ping wing flight observed in nature relies on unsteady fluid
dynamics principles to achieve better maneuverability and
smaller vehicle size [4]. Such advantages make flapping wing
air vehicles excellent candidates for surveillance and remote
sensing in hazardous locations. Meanwhile, the unsteady
nature of flapping flight poses modeling and control chal-
lenges to improve stability, maneuverability, and propulsive
efficiency.

The current Harvard RoboBee design, shown in Figure
1, uses two bimorph piezoelectric actuators to indepen-
dently control wing stroke motion, and the hinge motion
is mediated by passively rotating Kapton hinges. While this
design reduces system complexity, power consumption and
vehicle mass, it poses challenges to developing a dynamical
model that predicts both wing hinge kinematics and thrust
generation.

A number of quasi-steady models have been developed
from steady state classical aerodynamics [5] to describe
flapping flight. In 1963, Von Karman et al. first proposed
a formula for lift and drag coefficients based on complete
separated flow computation. In 2002, Dickinson et al. [6]
observed unsteady phenomena such as rotational circulation
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Fig. 1. The current Harvard RoboBee is an 80mg flapping wing microrobot
that can lift an extra 50mg payload. The wing design and control algorithm
are based on quasi-steady models that predict time averaged forces and
torques.

and delayed stall using a robotic wing. He proposed a quasi-
steady model based on his experimental results and intro-
duced additional modeling terms that account for added mass
and rotational damping effects. Lussier Desbiens et al. [7]
adopted the quasi-steady model for a passive flapping system
and demonstrated that the quasi-steady model yields accurate
kinematic and thrust predictions in the time averaged sense.
However, quasi-steady models cannot yield accurate predic-
tions of time varying lift and drag, and this error in turn
affects prediction of aerodynamic torques that govern hinge
kinematics. This modeling insufficiency restricts all control
algorithms to rely on time-averaged predictions, which ad-
versely affects maneuverability and flapping efficiency.

A number of 2D [8] or 3D [9] numerical models have been
developed to bridge the discrepancy between experiments
and quasi-steady models. Lentink et al. [10] show that 3D
mechanisms such as spanwise flow stabilize the leading
edge vortex and delay detachment. In hovering flight, vortex
shedding only happens at stroke reversal and as a result 2D
and 3D computational models yield very similar predictions.
In this paper, we implement a numerical two dimensional
Navier Stokes equation solver to study effects of parameters
that are not treated by quasi-steady models. In particular, we
investigate the effect of relative phase between stroke and
hinge rotation angles δ (Figure 2) on lift and drag production.
As shown in Dickinson’s robotic wing experiments [6], mod-
erate differences in δ accounts for more than 30% difference
in measured lift. Current wing and hinge designs rely on
quasi-steady models to optimize kinematic parameters such
as stroke and hinge amplitude, but ignore the influence of
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Fig. 2. The top graph shows measured stroke and hinge angles and the
least squares fit to a pure sinusoid. The recorded motion is nearly purely
sinusoidal, and δ indicates the relative phase between stroke and hinge
motion. If δ = 0◦, then the hinge angle is 0◦ at maximum stroke, as
shown in the bottom middle figure. δ < 0◦ means wing rotation leads
stroke motion and δ > 0◦ means wing rotation lags behind stroke motion.
Intervals of large stroke angle (φ) represent pitch rotation, and intervals
of slowly changing hinge angle (ψ) represents wing translation. The wing
translational phase is further divided into stroke acceleration and stroke
deceleration phase based on the curvature of the stroke function. The motion
tracking method is described in Section IIIB.

δ. We study this parameter’s influence on lift and drag
production by running simulations and experiments, thereby
extracting useful physical principles that will improve future
wing and hinge designs. The simulated results using our CFD
solver are compared with experimental results to validate our
findings. This computational model is shown to be 44% more
accurate than traditional quasi-steady models.

In addition, our simulation shows several interesting un-
steady phenomena such as vortex shedding, downwash and
wake capture. These physical phenomena affect lift and drag
production but are not accounted for in quasi-steady models.
By choosing appropriate morphological parameters, we can
increase lift production by making effective use of the wake
capture process. Hence, unlike quasi-steady models that only
yield force predictions, our numerical model allows us to
improve wing morphology and motion by making effective
use of unsteady phenomena. Owing to this increased ac-
curacy, this numerical tool is more powerful for improving
flapping efficiency than its quasi-steady counterparts. In the
rest of this paper we explain the implementation of the
numerical model, describe the experiment procedure, and
compare simulation with experimental results.

II. COMPUTATIONAL METHOD

A. Flapping Kinematics

As shown in Figure 3, the kinematics of a flapping wing
has 2 degrees of freedom—stroke and hinge rotations. The
experimental set up allows us to control the frequency and
amplitude of stroke motion, while the hinge rotation is
passively controlled by aerodynamic and inertial torques
and hinge compliance. As shown in Figure 2, experimental
measurement shows the hinge motion is very close to be a
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Fig. 3. The RoboBee wing has 2 degrees of freedom. The rotation (φ)
around the vertical body axis is actively controlled by piezoelectric actuators,
and the rotation (ψ) around wing hinge line is passive. In blade element
method, the motion of a thin rectangular segment along the wing chord
(shown in blue) is projected onto a 2D plane. The leading edge of the
wing segment is marked green. The angular stroke motion is transformed
into planar oscillatory motion, in which the amplitude L is given by
L = φmaxr, and r is half the wing radius. The black arrows indicate
the instantaneous direction and relative amplitude of aerodynamic forces.

pure sinusoid. Mathematically, the stroke and hinge motion
are given by

φ = φmax sin(wt)
ψ = ψmax cos(wt+ δ),

(1)

where φmax is the stroke amplitude, ψmax is the hinge
amplitude and δ is the relative phase. In quasi-steady blade
element models and 2D computational fluid dynamics mod-
els, the angular stroke motion is approximated by the trans-
lational motion of a thin blade element located a distance r
from the wing root. As shown in Figure 3, the amplitude of
the wing chord translational motion is given by L = rφmax,
where r is chosen to be the wing midspan.

Previous experiments have shown that mean lift increases
when δ < 0◦ and decreases when δ > 0◦ [6], [7]. As shown
in Figure 2, δ < 0◦ corresponds to advanced passive rotation
and δ > 0◦ corresponds to delayed passive rotation. Current
quasi-steady models cannot accurately predict the effect of
varying the kinematic parameter δ, hence we aim to inves-
tigate the influence of this parameter using computational
tools.

B. Numerical solver implementation

Our computational model assumes a 2D thin flat plate of
dimension 20µm × 3mm flapping in air with kinematics
described in the previous section. The two dimensional in-
compressible Navier Stokes equation and the corresponding
boundary conditions that govern the flapping motion are :

ρ∂ū∂t + ρ(ū · ∇̄)ū = −∇̄p+ µ∇2ū
∇̄ · ū = 0

ū|wing = (u, v)wing
p|∞ = 0,

where ū = (u, v) is the fluid velocity field and p is the
pressure field that enforces the incompressibility condition.
The fluid speed along the wing surface is equal to the wing
velocity, and the pressure at far field is set to be 0. In our
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computations, the range of Reynolds number is betweem 300
to 600.

We implement a numerical solver using the nodal dis-
continuous Galerkin finite element method, which allows
more geometric flexibility than the finite difference method
and requires coarser mesh resolution than the continuous
Galerkin method. The solver is implemented on a moving
Cartesian coordinate system, and the computational Delau-
nay triangulation mesh is generated by the open source
package distmesh [13]. The circular mesh used for simulation
contains 2242 elements, and its radius is chosen to be six
times the wing chord length to avoid unintended boundary
effects. The solution inside each mesh element is interpolated
using 5th order Lagrange polynomials.

The structure of this solver is based on the method
developed in [11]. The temporal scheme is solved using the
second order backward Adams Bashforth method, and the
spatial scheme is separated into three steps that individually
treat nonlinear advection, pressure field contribution, and
viscous correction. In addition, the flapping motion requires
the computational mesh to move with respect to the inertial
reference frame, hence a change of coordinate system is
needed. This method is not identical to solving the Navier
Stokes equation in a non-inertial reference frame by adding
fictitious forces; it is more general because it also allows
geometric deformation of the mesh. The transformation
between physical coordinates that are fixed in space and
computational coordinates that move with the wing is defined
as:

u(x, y, t) = ũ(ζ, η, τ)
v(x, y, t) = ṽ(ζ, η, τ)
p(x, y, t) = p̃(ζ, η, τ )

(2)

We denote the physical coordinates by x and y and the
computational coordinates by ζ and η. The temporal vari-
ables t and τ are identical, however we use different symbols
to avoid confusion between ∂

∂t and ∂
∂τ . The operators in

the inertial reference frame are replaced by operators in the
moving frame:

∂
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In component form, the Navier Stokes equation is trans-
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(4)

where ζt, ηt are the speed of the computational coordinates
with respect to inertial reference coodinates x and y, and
ζx, ηx, ζy and ηy are components of the transformation
Jacobian between physical and computational coordinates.
The parameters ρ and ν represent fluid density and kinematic
viscosity. The boundary conditions of u, v and p remain
unchanged. Given the fluid velocity field and pressure field
we can compute the force per unit length and torque per unit
length on the wing segment by integrating the stress tensor
along the wing surface as: F̄ =

´
wing

n̂ · ¯̄σdl, and T̄ =´
wing

r̄ × n̂ · ¯̄σdl, where n̂ is the local surface normal. We
can expand the stress tensor and arrive at equations for lift
and drag forces as follows:

FD = −
´
wing

(
−pnx + 2νρ∂u∂xnx + νρ ∂v∂xny + νρ∂u∂yny

)
dl

FL = −
´
wing

(
−pny + νρ∂u∂ynx + νρ ∂v∂xny + 2νρ∂v∂yny

)
dl.

(5)
Finally, we can relate the computational model to the

quasi-steady model by computing lift and drag coefficients:

CL = FL
1
2ρu

2
rmsc

CD = FD
1
2ρu

2
rmsc

,
(6)

where urms is the root mean square of wing velocity and c
is the wing chord length.

III. EXPERIMENT SETUP

To compare the numerical model with the actual forces
generated by the RoboBee, we utilize an existing set up to
measure the kinematics and dynamics of a flapping wing
[7]. As shown in Figure 4, the wing is attached to a custom
made carbon fiber wing driver that is mounted on a dual
axis force sensor. The wing stroke motion is controlled by
a bimorph piezoelectric actuator, and the hinge motion is
passively mediated by a Kapton hinge. The optical sensor
records the motion of the piezoelectric actuator, and the
camera records the top view of the flapping motion. The
following sections describe the details of force measurement,
motion measurement, and wing fabrication processes.
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Fig. 4. This illustration shows the experimental setup. The carbon fiber
wing driver consists of a piezoelectric actuator (black), transmission and
structural support. An external electric signal controls the actuator to drive
the stroke motion of the millimeter-scale wing (red). The aerodynamic
and inertial forces generated by a flapping wing are transformed into
displacements of the Invar sensor. Two capacitive sensors measure the
displacement and the data is post-processed to obtain lift and drag. A high
speed camera records the stroke motion.

A. Force measurement

The custom sensor consists of four parallel dual cantilever
modules arranged in a series-parallel configuration. The
structure converts a load into displacements in the vertical
and horizontal directions, and the displacements in both
directions are measured by two PISeca D-510.021 capacitive
sensors. We calibrate the sensors by hanging weights, and
the sensitivity was found to be -84.6 and 85.5 V/mN for
the lift and drag axes respectively. In our experiment, the
driving frequency is chosen to be 120Hz so that lift force
has a fundamental frequency of 240Hz and drag force has a
fundamental frequency of 120Hz. Since the sensors measure
aerodynamic and the inertial forces from the wing and wing
driver, we only report time averaged drag measurements. On
the other hand, we can accurately measure lift by filtering
out 10Hz to 200Hz and > 500Hz harmonics to eliminate
actuator inertial contributions and system resonance.This
band pass filter may eliminate higher order harmonics of
the actual lift signal, hence for comparison purposes we
also apply the same filter to the numerically computed lift.

The wing used in our experiment weigh 0.52mg , and the
magnitude of wing inertial contribution often accounts for
15%−20% of the aerodynamic contribution. Using measured
flapping kinematics and the estimated mass properties from
SolidWorks, we can substract out the effect of wing inertial
contribution. In the lift axis, the formula is given by

Faero = maz −mg − Fsensor, (7)

where az id the z-component of wing inertial acceleration.
We can compute az as

az = rcom,z(cos(ψ)ψ̇2 + sin(ψ)ψ̈), (8)

where rcom,z is the wing center of mass position in the z-
direction. In our mass model we neglect the center of mass
offset due to wing thickness.

B. Wing kinematics measurement

The wing stroke and hinge motion are recorded at 10kHz
using a Phantom V7.3 high speed video camera with an AF
MICRO Nikon 200mm f/4 lens. In this experiment, we treat
the wing as a flat plate and use the top view to extract hinge
and stroke motions. The details of the extraction algorithm
are described in [7].

C. Wing and wing hinge design

The wing used in the experiment is made from a carbon
fiber frame and polyester membrane with 3mm mean chord
and 54mm2 total area. The wing hinge is made of a com-
pliant 1.25mm × 140µm × 7µm kapton layer sandwiched
between two carbon fiber layers. Details of the design and
manufacturing methodology used for the wing, transmission,
and actuators are described in [14].

IV. DISCUSSION

To examine the validity of our numerical model, we
compare simulation results with the measurements. A wing
is flapped with specified driving voltage and frequency pairs
and we measure the corresponding kinematics and forces.
The measured wing kinematics are used as the inputs to
the numerical simulation, and lift and drag coefficients are
computed to compare with experimental results. The numer-
ical simulator is also used to explore parameter spaces that
are not covered by passive rotation experiments to further
study the influence of relative phase parameter δ and identify
phenomena not accounted for in quasi-steady models.

A. Comparison between experiment and computation

We run the flapping experiment with a 120Hz driving
frequency and sweep through different voltage amplitudes to
find a case for which the relative phase δ between stroke and
hinge angle is 0◦. The kinematics and forces are measured
using the method described in the previous section. At 190V ,
δ is measured to be -0.19◦ and the flapping stroke and
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hinge amplitudes are measured to be 34◦ and 43◦ degrees
respectively. The corresponding Reynolds number is

Re =
umaxc̄

ν
= 570 (9)

We then use Φmax = 34◦, Ψmax = 43◦, and δ = 0◦ as
the input parameters and solve the 2D flow problem for the
chord segment at midspan of the wing. Finally, we compute
the instantaneous lift and drag coefficients and compare
that with classical quasi-steady model and experimental
measurements.

As shown in the top graph of Figure 5, the numerical
solution (blue) shows lift peaks in the stroke deceleration
phase and this agrees well with the measurement (red). On
the other hand, the green curve (quasi-steady model) is sym-
metric with respect to its local maxima so the quasi-steady
model does not distinguish between the stroke acceleration
phase and the stroke deceleration phase. While there are
quasi-steady models based on 2D inviscid flow that address
added mass and rotational circulation effects, they usually
involve extra fitting parameters and are not robust for large
operating range. Hence, the quasi-steady model we compare
with only contains the translational term. This asymmetry
can be understood by studying the flow structures around
the wing and can be utilized to enhance lift production.
Figure 6 shows the vorticity field around a flapping wing
segment in the fourth flapping period. Large vorticity on the
wing leading edge corresponds to high lift. In the stroke
acceleration phase (T=3.08 to T=3.25 and T=3.58 to T=3.75),
vorticity on the upper wing surface is small. In the stroke
deceleration phase (T=3.25 to T=3.42 and T=3.75 to T=3.91)
we observe a large vortex on the upper wing surface that
leads to large lift force. We also observe that the leading edge
vortex grows only when the angle of attack is positive. On
the other hand, the vortex shedding process is not sensitive
to angle of attack.

This observation suggests that by varying the relative
phase δ between stroke and hinge angles we can increase
or reduce lift. δ < 0◦ corresponds to advanced wing pitch so
that the leading edge vortex starts to grow immediately after
stroke reversal at a positive angle of attack. These kinematics
favor vortex development and augment lift production. In
contrast, δ > 0◦ corresponds to delayed wing pitch and
inhibits vortex generation. Figure 7 shows the negative
correlation between time averaged lift coefficient C̄L and
time averaged drag coefficient C̄D as functions of δ. In the
classical quasi-steady model, CL and CD only depend on
angle of attack α. However, using the numerical solver we
have shown that lift and drag cofficients are also strong
functions of δ. Compared to δ = 0◦, the simulation of δ =
−30◦ shows 30% increase of C̄L and 44% increase of C̄D
(Figure 7B). On the other hand, at δ = 30◦ we observe 47%
decrease of C̄L and 9.7% decrease of C̄D (Figure 7B). This
computational result agrees with the qualitative experiment
result presented in [12]. Not only does the numerical model
describe the influence of the kinematic parameter δ, it also
shows other unsteady effects that can be utilized to improve
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Fig. 5. Lift and drag coefficients for 120Hz with δ = 0◦, φmax = 35◦,
and ψmax = 43◦. The x-axis is the number of flapping periods. To avoid
transient effects, this graph shows the lift and drag coefficient from the 3rd
to the 6th flapping periods. The blue curves represent the numerical solution
by solving the 2D Navier Stokes equation. The green curve shows quasi-
steady estimates (based on Dickinson’s formula [6]) and the red curve shows
sensor measurements. To eliminate wing driver inertial contributions and
sensor resonance, the 10 to 200Hz and > 500Hz harmonics are filtered
out. The same filter is applied to the numerically computed forces. The wing
inertial contribution is also subtracted out from the sensor measurement.
We do not show the time varying drag measurement because the motion of
piezo-actuator is in the direction of the drag axis.

flapping kinematics and wing morphology.

B. Identification of unsteady effects

Downwash effect: Our simulation shows that an impul-
sively started wing generates more lift than that of a wing
already flapped for several periods. Since the kinematics
in both cases are identical, the quasi-steady model predicts
identical lift and drag. However, as shown in Figure 8, the
pressure on the wing leading edge at T = 0.25 is more
negative than it is at T = 2.25, meaning that the instanta-
neous lift generated is larger at T = 0.25. This phenomenon
can be understood by comparing the y-component of the ve-
locity field. A flapping wing continuously generates lift and
transfers downward momentum to surrounding fluid. This
downwash tends to reduce the translational lift generated by
the wing. In our simulation, the lift of the first period is 17%
higher than the time-averaged lift.

Generation and shedding of vortices: A leading edge
vortex develops in the stroke acceleration phase and sheds
at the end of stroke deceleration phase. As discussed in the
previous section, this physical mechanism depends on flow
field history and cannot be modeled by classical quasi-steady
models. Figure 9 shows the vorticity field and the corre-
sponding pressure field to illustrate vortex generation and
vortex shedding processes. We can increase or reduce mean
lift by varying the phase lag δ between stroke translation and
pitch rotation.
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T=3.00 T=3.08 T=3.25T=3.17

T=3.33 T=3.42 T=3.50 T=3.58

T=3.83T=3.75 T=3.91T=3.67

Fig. 6. Vorticity plot around a flapping wing in the fourth period. Red color represents positive vorticity (points out of the page) and blue color represents
negative vorticity (points into the page). The vorticity color bar has units of 1/s. Since the flow is incompressible, the information shown by the vorticity
field is equivalent to that of the complete velocity field. Regions of high vorticity (absolute value) correspond to regions of low pressure. A large vortex
grows on the leading edge of a translating wing and is shed during stroke reversal. A lift peak occurs near T=3.42 and T=3.91 during the stroke deceleration
phase.

A B

Fig. 7. C̄Land C̄D as functions of δ. All simulations are ran with identical
mesh, stroke and hinge ampltiude, while the phase parameter δ is varied
from −40◦to 30◦. The graph on the left (A) shows time averaged lift
and drag coefficients for an impulsively started wing for a half flapping
period. The graph on the right (B) shows the same simulations for 4 flapping
periods. In the first half stroke there is no wake capture and downwash
effects so Figure 7A quantifies the effect of δ on translational lift and drag
alone. After the first half flapping period we observe interaction between
wing and shed vortices. Figure 7B shows variations of C̄L and C̄D due to
δ’s effect on both translational and rotational motion.

Wake capture: Wake capture refers to the interaction
between a wing and its previously shed vortex in the stroke
acceleration phase. As described in [4], wake capture can
often lead to a secondary lift peak. In our simulation, wake
capture is beneficial to lift generation in the first period
but becomes detrimental to lift generation for subsequent
flapping periods. As shown in Figure 5, the computed lift
coefficient is negative in the stroke acceleration phase. We

Vy Vy

Pressure Pressure
T=0.25

T=0.25 T=2.25

T=2.25

Fig. 8. Downwash and its adverse effect on lift production. The figures in
the first row show the y-component of the velocity field. The velocity field
color bar has units of m/s. More severe downward flow (blue) is observed
at T=2.25 than at T=0.25. Figures in the second row show that the pressure
field on the wing upper surface is smaller at T=0.25 than at T=2.25, which
correspond to higher lift at T=0.25. The pressure field color bar has units
of N/m2.

can understand this phenomenon by studying pressure and
vorticity graphs shown in Figure 10. At T = 0.5 and
T = 1.5 we observe similar shed vortices. In the first
period, the shed vortex moves over the leading edge and
convects to the opposite side of the wing at T = 0.7. The
corresponding pressure graphs show that the region of low
pressure convects to the wing upper surface, thus creating
more lift. On the other hand, the vortex shed at T = 1.5
moves along the lower wing surface and convects toward the
trailing edge. As a result, a low pressure region along lower
surface corresponds to lower lift. This phenomenon can be
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Pressure Pressure

Vorticity Vorticity
T=0.25 T=0.50

T=0.25 T=0.50

Fig. 9. Vortex generation and shedding. The figures in the first row show
the pressure field around a translating (T=0.25) or rotating (T=0.50) wing.
The figures in the second row show the corresponding vorticity field. During
wing translation (T=0.25), a leading edge vortex grows and as a result a
low pressure region on the wing upper surface leads to high lift. During
wing rotation, the vortex detaches from the wing surface (T=0.50) and lift
plummets. The pressure field has units of N/m2 and the vorticity field has
units of 1/s.

explained by the downwash effect, in which the downward
moving fluid affects the vortex convection direction.

Through simulations, we find that wake capture properties
can be enhanced by increasing stroke amplitude or shrinking
wing chord. Figure 11A compares vorticity plots of flapping
motions with different stroke amplitudes. The shed vortex
convects along lower wing surface for L = 4mm, and it
convects to the upper wing surface for L = 6mm. The
corresponding lift coefficients for a half flapping period
(T = 2 to 2.5) is shown in Figure 11 B. While the primary
lift peaks in both cases are similar, we observed different
wake capture effects. During the stroke acceleration phase,
the lift coefficient for L = 4mm is negative while the lift
coefficient for L = 6mm is positive. As discussed in the
previous section, this difference depends on whether the shed
vortex convects along the lower wing surface or rolls over to
the upper surface. We find that favorable wake capture leads
to 32% increase of mean lift coefficient. This simulation
result implies that future wing design must have appropriate
stroke amplitude to chord length ratio to achieve favorable
wake capture effects.

V. CONCLUSION AND FUTURE WORK

This paper presents a computational tool designed specif-
ically to model the aerodynamic performance of RoboBee
flapping flight. Unlike classical quasi-steady models that
calculate aerodynamic forces based only on wing geometry
and kinematics, this numerical model identifies unsteady
fluid mechanisms that are important to improving propulsive
efficiency. More specifically, we quantify the effect of the
phase parameter δ on lift and drag production through simu-
lations. While holding other kinematic parameters constant,
the mean lift coefficient C̄L increases by 30% and mean drag
coefficient increases by 44% if δ is reduced to δ = −30◦. On
the other hand, if δ is increased to δ = 30◦ then we observe
47% decrease in mean lift coefficient and 9.7% decrease in

Vorticity

Pressure

T=0.5 T=0.7 T=1.5 T=1.7

Fig. 10. Wake capture effect. Figures in the first row show vorticity plots
with units of 1/s and figures in the second row show pressure field with
units of N/m2. The four figures on the left show a favorable wake capture
effect in the first flapping period in which the vortex rolls over the leading
edge and its corresponding low pressure acts to increase lift. The four figures
on right show an adverse wake capture effect in the second period in which
the vortex rolls along the lower wing surface and its corresponding low
pressure region reduces lift.

T=2.00 T=2.18

T=2.00 T=2.18

A B secondary lift peak primary lift peak

Fig. 11. Wake capture effects of different flapping amplitude to chord
length ratio. The vorticity plots (A) illustrate different directions of vortex
movement for L

c
= 1.33 (top row) and L

c
= 2.00 (bottom row). In the

case of L
c

= 1.33, the previously shed vortex convects along the lower
wing surface. In the case of L

c
= 2.00, the vortex rolls over to the upper

wing surface. The lift coefficient graph (B) compares the time varying lift
coefficients for a half flapping period. Whereas the primary translational
lift peaks (T=2.2 to T=2.5) are similar, the secondary lift peaks (T=2.0 to
T=2.2) are different due to differences in the wake capture process. The
lift coefficient graph shows larger L

c
ratio corresponds to larger mean lift

coefficient.

mean drag coefficient. This simulation result suggests that
future RoboBee design should utilize a stiff hinge to advance
passive wing pitch rotation. This computational result agrees
well with previous experimental findings [7].

In addition, our simulations show that wake capture effects
can be beneficial or detrimental to lift production depending
on the movement of shed vortices. We can induce favorable
wake capture effects by increasing the flapping amplitude
to chord length ratio L

c . Furthermore, we have validated
our numerical model by comparing simulation results to
quasi-steady predictions and experimental measurement. It
is shown that our numerical model gives a 44% percent
better approximation to 3D experiments than the quasi-steady
model in the least squares sense.

Whereas the quasi-steady model requires fitting coef-
ficients, this numerical model is rigorously derived from
Navier Stokes equations and does not require fitting pa-
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rameters. This property makes the numerical model more
reliable for future wing kinematics optimization studies.
Ensuing studies should further develop this computational
tool to optimize passive rotation kinematics. Whereas the
current model requires completely prescribing stroke and
hinge motion, the immersed boundary method can be im-
plemented to allow wing-fluid interaction [15]. By defining
wing stroke kinematics alone, future computational model
should return hinge kinematics along with force estimates. In
addition, particle image velocimetry techniques can be used
to compare experiment measurement with the computed flow
field.
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