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An efficient method for the design and fabrication
of 2D laminate robotic structures

Yufeng Chen1,2, Aaron Ong3, and Robert J. Wood1,2

Abstract—Microrobots are constructed based on processes
involving lamination of 2D materials and laser ablation. To satisfy
the size constraint of the laser cutting field, different microrobotic
components are tiled within a square template during the design
process. Here we develop a number of automated 2D tiling
algorithms that aim to improve microrobot fabrication efficiency.
We quantify and compare the performance of a deterministic
method, a method based on simulated annealing and expectation
maximization, and a method based on potential functions and
stochastic gradient descent. These methods automatically tile
irregular 2D shapes within a template, and they can be applied
to improve the fabrication efficiency of microrobotic components.
To demonstrate the effectiveness of this method, we design and
fabricate 102 different robot wings in the same setting, which
represents over five times improvement compared to previous
methods. Flapping experiments with these wings are further
conducted to identify the corresponding operating conditions.

I. INTRODUCTION

Due to smaller size and weight, microrobots [1], [2], [3],
[4] are better suited for search and rescue and environmental
exploration missions in cluttered environments compared to
large, traditional robots. The Harvard RoboBee [5], shown in
figure 1A, is an 80 mg, flapping wing microrobot. The robot
consists of a carbon fiber airframe, two piezoelectric actuators,
two composite wings made of carbon fiber and polyester, and
transmission mechanisms made of polyimide and composite
materials. Traditional manufacturing methods such as CNC
machining, molding, or casting cannot be applied to mesoscale
fabrication due to their limitations in precision and applicable
materials.

To address the challenges in microrobotic fabrication, a
novel laminate-based manufacturing technique is developed
[6], [7]. Using laser ablation and lamination techniques, this
fabrication method builds 3D structures out of 2D laminate
materials. In the fabrication process, different patterns are
laser cut from different material layers. Next, these material
layers are stacked together through pinhole alignments (figure
1B). By applying heat (up to 200 ºC) and pressure (up to
70 lb/in2)(figure 1C), these material layers are laminated into
a single layer. Finally, mircorobotic components are released
from this laminated layer, and the components either self-fold
or are manually folded [8] into 3D functional structures.
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Figure 1. Microrobot fabrication. A. The Harvard RoboBee is an 80
mg flapping wing aerial microrobot. All the components of this robot are
fabricated based on the 2D lamination process. B. The robot wing lamination
process. Different material layers are laser machined, and then positioned and
stacked using alignment pins. C. These layers are laminated together under
pressure and heat, and the laminated assembly is released by laser to make
functional robotic components.

This fabrication method imposes two major difficulties on
the design process: 1) the cut patterns of different material
layers need to be individually designed, which is both time
consuming and error-prone; 2) the lamination procedure re-
quires multiple robotic components to be fitted into a tem-
plate of fixed size, and this tiling process requires human
effort. Manually tiling a large number of objects is both time
consuming and inefficient, and this often leads to a waste
of materials. In this paper, we describe a new design tool
that resolves these challenges. Given the design parameter
values, the algorithm automatically generates the cut files for
different material layers. In addition, given a set of objects that
need to be fabricated, the algorithm automatically tile these
objects within a template. Here we use the RoboBee wing
fabrication as an illustrating example to demonstrate the new
design method’s effectiveness.

II. AUTOMATED DESIGN OF A SINGLE WING

A RoboBee wing is made of a carbon fiber structural frame
and polyester membrane through the laser ablation and lami-
nation processes. The fabrication requires three materials: 0º-
45º-0º carbon fiber laminate, polyester membrane, and acrylic
adhesive. The 0º-45º-0º carbon fiber laminate ensures high
stiffness along the leading edge and wing spar directions. The
acrylic adhesive laminates polyester membrane to the carbon
fiber frame. Each material is laser cut using different cut files
and laminated together under heat and pressure. Once cured,
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Figure 2. Illustration of wing cut file generation. A. Design processes of a single wing. After wing outer contour is generated based on morphological
parameter inputs (A-1), wing spars are placed between the leading and the trailing edge (A-2). Next, stress relieving fillets (A-3) and mating feature (A-4)
are added to the design. B. Cut files of the carbon fiber composites (B-1), the acrylic adhesive (B-2), and the final release (B-3). A sample wing designed by
this algorithm is shown in (B-4).

the composite is laser cut again to release the wings. Here we
discuss the design process and describe a design automation
method.

Previous wing shape variation studies required manual
generation in a professional CAD software. This process was
both time consuming and inconsistent, since a human operator
was in charge of hand determining fine details such as spar
placement and fillet curves radii. We develop an algorithm
that generates wing designs based on morphological parameter
inputs. As discussed in a previous study [9], the wing planform
is completely parametrized by a leading edge function yLE(r),
wing span R, first moment r̂1, and mean chord length c̄.
Figure 2 illustrates the design process of a single wing. The
algorithm computes the wing planform (figure 2A-1) based
on user inputs. Next, two diagonal wing spars are placed
between wing leading and trailing edges (figure 2A-2). These
spars form 45º angle with respect of the wing leading edge
to ensure alignment with the 0º-45º-0º carbon fiber laminate.
In addition, stress relieving features are placed at wing spar
locations (figure 2A-3). Finally, a mating feature is placed near
the wing root for wing hinge attachment (figure 2A-4).

The completed design is further decomposed into three
different laser cut files. Selected regions of carbon fiber (figure
2B-1) and acrylic adhesive (figure 2B-2) are removed before
the lamination step. Compared to the carbon fiber cut pattern,
the adhesive cut pattern is offset outward to account for
material thermal expansion during the lamination process. The
final release cut traces the wing outer contour (figure 2B-3).
Figure 2B-4 shows a photograph of a robot wing designed
by this algorithm. In the following sections, we describe
algorithms that automatically pack many robot wings within
the same template for efficient fabrication.

III. AUTOMATED TILING OF MULTIPLE WINGS

A. Problem formulation

Our manufacturing process requires multiple objects to be
fitted into a template for batch fabrication. The 2D tiling
problem can be formulated under the optimization framework.
Given a list of objects si, we aim to choose the subset of
objects whose total area is maximized. We further impose two
constraints: no two objects overlap and each selected object
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Figure 3. Problem formulation and packing algorithms. All convex shapes
are represented by circles in this figure. A. Illustration of a list of circles
that need to be tiled into a square template. B. A deterministic greedy
method. The circles are ranked and then tiled into the template in several
strips. C. A stochastic method based on simulated annealing and expectation
maximization. In C-1, the method uses simulated annealing to choose the set
of items to be packed. In C-2, the method packs the items into a template
through sampling. D. Illustration of a potential function. D-1 The spring
potential and gravitational potential between two objects. The dotted line
indicate the position when two objects collide. D-2 Spring potential dominates
when objects are far away from the template and attract the objects toward
the template center. D-3 Gravitational potential dominates when objects are
close to each other and are near the template center.

must be placed within the template. Mathematically, this NP
hard integer programming problem is described by:

argmax
∑

i ziAi

s.t. si ∩ sj = {}∀i, j
si ⊂ B ∀i

We aim to solve for the selection indicator vector z and
centroid position xi for every selected object. Ai is the area
of the ith object and B is the bounding template. While
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this formulation is similar to the 1D knapsack problem, it
is difficult to search for a feasible solution given selection
indices. Once the set of chosen items are mutated, the latent
variables often need to be re-solved.

Figure 3A illustrates a set of tiled objects using only
circles, while in our implementation the tiled shapes also
include convex polygons. Limiting the tiled objects to convex
polygons and circles makes object overlap detection faster,
and it does not limit the algorithms’ usefulness because an
arbitrary shape can be bounded by a convex polygon and then
tiled by the algorithms. In addition, the latent variables only
involve the centroid location (xi, yi) and we do not allow
planar rotation. This assumption is justified because laminate
materials such as carbon fiber composites are often directional.
In the following section, we describe algorithms for solving
this packing problem.

B. Algorithm design
1) First Fit Decreasing Height: We implement a determin-

istic strip packing algorithm for baseline comparison. There
is a class of strip packing algorithms discussed in [10], [11],
[12], [13], [14]. This type of algorithms first find a rectangular
bounding box, then rank the object in either height, width
or height to width ratio. The objects are later put into the
bounding area B according to the sorted sequence. These
methods have complexity of O(nlogn), and they give a greedy
approximation of the solution. Figure 3B illustrates an example
based on a deterministic method.

2) Simulated annealing: It is difficult to simultaneously
solve for the labels and the latent variables through simulated
annealing. Here we design a two-step process inspired by
expectation maximization. The EM algorithm uncouples the
problem into two iterative steps, where the first step solves for
the free parameters and the second step solves for the labels.
Due to the special concave property of the log-likelihood
function, the EM algorithm is guaranteed to monotonically
converge to a local minima. Our approach is inspired by the
EM algorithm but does not have the monotonicity property,
and consequently there is no likelihood or objective function
that is strictly convex. It is similar to the EM method because
this iterative approach uncouples the large search space of
latent variables (xi, yi) and labels zi.

Simulated annealing is a very popular method for discrete
optimization problems where it is difficult to derive analytical
gradients. Here choosing a list of items is a discrete problem.
Since we set the objective function value to be the net covered
area, we can implement simulated annealing and use this value
as the criteria for rejecting or accepting the proposal. Figure
3C-1 and 3C-2 illustrate this process of solving for the labels
zi and the latent variables (xi, yi) iteratively.

3) Stochastic gradient descent: It maybe inefficient to pack
the objects using simulated annealing because gaps exist
between neighboring objects. Consequently, it is important
to design potential functions that remove unnecessary white
space.

Our algorithm defines a potential function and searches for
a local minimum. This potential function is defined as the sum
of a global quadratic potential and local gravitational ones:

U =
1

2
K

∑
i

xTi xi −G
∑
i

∑
j 6=i

Aj
1

||xj − xi||
,

where K and G are the spring and gravitational coefficients.
The solver starts by randomly placing each item outside of the
template and then iteratively minimize the objective function.

In every iteration each object is displaced sequentially in
the direction of the local gradient:

Di ∝ Fi = −∇iU = Kxi +G
∑
j 6=i

Aj
xj − xi
||xj − xi||32

.

As shown in figure 3D-1, the spring and gravitational po-
tentials dominate in different regimes. The spring potential
gives a “long range” force because it has a large gradient
when objects are distant to the template center. In contrast, the
gravitational potential gives a “short range” force because its
gradient increases as two objects move close. A distant object
is pulled toward the template by a long range spring force
(figure 3D-2). Objects within the template pack densely due
to local gravitational attraction (figure 3D-3). Finally, every
object performs a biased random walk after a fixed number
of iterations. This design allows objects to escape from local
minima. This potential function is computationally expensive
because all objects interact with every other ones. Instead of
accounting for every pairwise interaction, we approximate the
function gradient by randomly sampling five neighbor objects.
At the start of the algorithm, we randomly place each item far
away from the template and allow the spring potential to attract
them toward the center.

C. Comparison of algorithm performance

To evaluate the performance of each packing algorithm, we
design a test case consisting of 30 randomly generated objects.
Each algorithm solves the same packing problem with the goal
of maximizing the total covered area given a fixed template
size. Figure 4 compares the performance of each method, and
further identifies the corresponding strengths and weaknesses.

1) Greedy deterministic method result: We find that the
deterministic greedy algorithm is very efficient when tiling
a collection of regularly sized items. Figure 4A shows the
tiling result of this greedy algorithm. The algorithm packs 28
out of 30 items within 0.1s. However, as we introduce one
additional item that is significantly taller than the others, the
algorithm performance deteriorates quickly. In figure 4B, the
greedy algorithm only tiles 11 items and suffers 22% reduction
of covered area. This example shows that the deterministic
method is sensitive to outlier shapes and dimensions.

2) Simulated annealing result: We find that simulated an-
nealing is inefficient and returns a mediocre solution. Figure
4C shows the tiled pattern with a total area of 154 and run
time of 21 minutes. While simulated annealing performs well
at shuffling the selection indices, it takes a long time towards
finding a feasible solution. The method does not have spacial
information about relative item placement. Consequently, it
can only place down a new item by sampling the remaining
empty space. As the net covered area increases, the method of
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Figure 4. Comparison between different packing methods. A. Tiled pattern
of the greedy algorithm for a set of randomly chosen items. The method
tiles 28/30 items. B. Tiled pattern with one added irregular item. Here only
11/31 items are tiled. C. Tiled pattern of the simulated annealing method. The
method tiles 24/30 items. D. Tiled pattern of the stochastic gradient descent
method. The method tiles all 30 items. E. Tiled area as a function of iteration
for the simulated annealing method shown in C. F. Potential function value
as a function of iteration for the stochastic gradient descent method shown in
D.

random placement through sampling suffers from having high
rejection rate. Figure 4E shows the net covered area increases
slowly as a function of algorithm iterations. In addition, there
is usually a large amount of empty space between neighboring
items, and the uncovered area is characterized by the length
scale of the smaller items. These shortcomings make simulated
annealing an unpromising packing method.

3) Stochastic gradient descent result: We find the stochastic
gradient descent method to be both efficient and robust. Figure
4D shows the tiled pattern and here the method fits all the
given items within two minutes. Figure 4F shows the reduction
of the potential function value as the algorithm runs. The small
kink in figure 4F is caused by the random walk after every
30 iterations, and this random walk is important for escaping
local minima. We find that the items are tightly packed due to
the gravitational attraction.

A B

C D

iteration 1

iteration 5 iteration 40

Figure 5. Demonstration of automated wing design and tiling. A. A wing
design is automatically generated and it is bounded by a convex polygon.
B-D. Initialization, iteration 5, and iteration 40 of the wing tiling process.
In B-D, the inner black square indicates the template size, the blue colored
polygons represent wings that are tiled within the template, and the red colored
polygons represent wings that have not been fitted into the template.

D. Demonstration of wing tiling

As discussed in the introduction section, the design of
RoboBee wings is crucial for flight efficiency and vehicle
payload. The robot actuation and transmission are highly
nonlinear, and existing quasi-steady models cannot predict the
lift and drag forces associated with a particular wing design.
Consequently, characterizing the wing performance requires
extensive experimental efforts [9], [15]. A number of wing
parameters can be varied during experimental evaluations.
For instance, increasing the wing area reduces the system
resonance frequency; increasing the wing area moment or
reducing the wing aspect ratio increases the load on the wing
tip; changing the wing leading edge profile affects the wing’s
passive pitch rotation. Meanwhile, varying these parameters
changes the wing shape, which requires modification in the
design cut files. The method discussed in section II can
automatically generate the cut files for a single wing given
modified morphological parameters. Here we apply the pack-
ing method based on stochastic gradient descent to improve
the fabrication efficiency of a large number of different wings.

Figure 5 illustrates this automated tiling process. Given an
auto-generated wing profile, this method first simplifies the
wing geometry by computing a convex bounding box (figure
5A). Next, the algorithm initializes and assigns each wing
with a random centroid position (figure 5B). For visualization
purpose, a wing is colored blue if it is completely contained
within a 45 mm × 45 mm square template. A wing is colored
red if any part of the wing lies outside of the template. As the
algorithm proceeds, the spring potential dominates and pulls
more wings into the template (figure 5C). Once the wings are
pulled into the template, the gravitational potential dominates
and it densely pack the neighboring wings. If several wings
form an unfavorable configuration, then a random walk breaks
this configuration, leading to an improved arrangement. As
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Figure 6. Comparison between a deterministic tiling method and the stochastic
tiling method. A. The deterministic method tiles 65 wings in one template.
B. The stochastic method fits 102 wings into the same template, representing
57% improvement.

shown in figure 5D, the white space between the packed
wings substantially reduces after the 40th iteration. In this
example, the algorithm tiles 33 wings in a 45 mm × 45
mm template within 2 minutes of run time. Once the tiling
algorithm terminates, it rejects all the red colored wings and
outputs cut files only containing the blue colored wings. The
rejected wings are tiled in another empty template for ensuing
batch fabrication.

IV. RESULTS AND DISCUSSION

The demonstration shown in the previous section illustrates
the algorithm convergence process for a medium sized prob-
lem. In this section, we apply the single wing auto-generation
method and the auto-tiling algorithm toward fabricating over
100 wings in a single batch. In our fabrication setup, the laser
machining system has a maximum cutting field of 85 mm×
85 mm, and consequently we decide to demonstrate efficient
wing fabrication using this large template.

Figure 6 compares the performance of a hand-tuned, deter-
ministic tiling method and the method based on the potential
function and stochastic gradient descent. The deterministic
method bounds each wing using a rectangle and tiles these
rectangles in the template (figure 6A). This method fits a total
of 65 wings and it shows two shortcomings: 1) large wings
and small wings occupy the same area inside the template,
and 2) there remains unfilled space between neighbor wings.
Both problems are mitigated by the stochastic tiling method.
As shown in figure 6B, the stochastic tiling method reduces
unnecessary space between neighboring wings, and wings of
different area are densely packed together. The stochastic tiling
method fits 102 wings in the same template, representing 57%
improvement.

Without any manual modification, we use the auto-generated
cut files to fabricate the wings. First, the carbon fiber layer, the
acrylic adhesive layer, and the polyester layer are separately
laser machined and then laminated together. Figure 7A shows
the laminated material prior to the laser release cut. Before
releasing the wings from this template, we label the design pa-
rameters on each wing root. The numbers shown in figure 7B
represent the wing aspect ratio, wing span, first area moment,
and leading edge sweep ratio, respectively. Labeling each wing
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Figure 7. Illustration of robot wing fabrication. A. Fabrication of 102 different
wings within one template. B. Wing design parameters are labeled on the wing
root.

facilitates the following wing characterization experiments.
Finally, the wings are released from the template through a
laser release cut. This entire fabrication process takes less than
a working day to complete, and it requires approximately four
hours of human supervision.

Traditionally, wing design and cut file generation are more
time intensive compared to the fabrication process. Manually
designing the cut files of a single wing requires at least an
hour, and manually tiling over 100 wings is both tedious and
inefficient. Consequently, the entire design process can take
up to a working week whereas the fabrication procedure takes
less than a working day. By developing these design and tiling
methods, we completely automate the wing design process. By
only specifying the wing morphological parameters, we leave
all the design details to the algorithm, which takes under 20
minutes to compute and generate all the required laser cut files.
Hence, this development represents a substantial improvement
of efficiency (over five times in terms of the total design and
fabrication time).

Finally, we demonstrate flapping wing motion using a
sample wing chosen from the batch. The area, aspect ratio,
and area moment r̂1 of this wing are 27 mm2, 3, and 0.49,
respectively. The wing is mounted onto a wing hinge whose
stiffness is 2.4 µNm/rad, and the assembly is installed on
a wing driver (figure 8A). Using the method described in a
previous study [15], 77 flapping experiments are conducted to
identify the wing operating conditions. In these experiments,
the input voltage and flapping frequency vary in the range of
100 - 200 V, and 170 - 230 Hz, in steps of 10 V and 10 Hz,
respectively. For the wing under test, the optimal operating
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Figure 8. Demonstration of a flapping experiment using a wing from the batch
fabrication. A. The wing is installed on a wing driver. B. Images taken from
a high speed video of the flapping experiment. The wing flapping amplitude
is maximized at 220 Hz. The labeled time in B is normalized to a flapping
period.

condition is found to be 200 V and 220 Hz, with a maximum
stroke amplitude of 82◦. Figure 8B shows an image sequence
of the flapping wing motion at the optimal operating condition.
In future studies, these experiments can be repeated for other
wings to compare wing performance. This fabrication method
allows efficient evaluation of different wing designs, and this
shows promise to improve the aerodynamic efficiency of future
flapping wing vehicles.

V. CONCLUSION AND FUTURE WORK

In this work, we have developed several 2D tiling algorithms
that aim to improve the microrobot fabrication efficiency. We
quantify and compare the algorithms’ performance and show
that a method using stochastic gradient descent to optimize
a custom-designed potential function is the most robust and
efficient. We further demonstrate the effectiveness of this algo-
rithm by designing, tiling, and fabricating 102 different wings
in the same template, which represents 57% improvement
over a deterministic method. Compared to the existing wing
fabrication process, this auto-design and auto-tiling approach
substantially reduces the total design and fabrication time by
over five times. This improvement of fabrication efficiency
paves the way for comprehensive experimental studies of wing
performance.

While this work uses wing fabrication as a motivating
example, this automation approach can be widely applied to
the design of other microrobotic components. For instance, the
RoboBee transmission and wing hinge consist of compliant
polyimide flexures and rigid carbon fiber linkages. Modify-
ing the dimensions of the flexures and linkages change the
transmission ratio and stiffness, respectively. These parameters
have a large impact on system resonance and consequently
influence the robot flight efficiency and payload. We can use
our algorithm to facilitate the design of these components,
thus preparing for further experimental optimization of robot
performance. Finally, the RoboBee is an example of the many
microrobots [17], [18] and microrobotic devices [19], [20] that
are fabricated through the 2D lamination process. The design
and tiling algorithms presented in this paper can be applied in
the fabrication process of similar microrobotic systems.
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